Hyperfinite graphings, part II

Marcin Sabok

McGill University

Winter School in Abstract Analysis 2022

Marcin Sabok Hyperfinite graphings McGill University

Theorem (Bowen–Kun–S.)

Any bipartite hyperfinite a.e. one-ended regular graphing admits a **measurable perfect matching**.

Marcin Sabok Hyperfinite graphings McGill University

Image: A math a math

Perfect matchings in graphings 0●00	Treeings 00000	Almost perfect matchings	One-ended spanning trees

Example (Laczkovich)

There exists a 2-regular (so bipartite, two-ended, hyperfinite) graphing that **does not admit a measurable perfect matching**.

McGill University

Perfect matchings in graphings 0●00	Treeings 00000	Almost perfect matchings	One-ended spanning trees

Example (Laczkovich)

There exists a 2-regular (so bipartite, two-ended, hyperfinite) graphing that **does not admit a measurable perfect matching**.

Proof

Consider an irrational rotation $T_{\theta}: S^1 \to S^1$ and let G be the Schreier graph of the induced \mathbb{Z} -action.

< ∃ >

McGill University

Perfect matchings in graphings	Treeings 00000	Almost perfect matchings 0000000000	One-ended spanning trees
Definition			
Demittion			

A measurable map $T: (V, \nu) \rightarrow (V, \nu)$ is **ergodic** if any *T*-invariant measurable set is either measure 1 or 0.

Marcin Sabok Hyperfinite graphings McGill University

< □ > < □ > < □ > < □ >

Perfect matchings in graphings 00●0	Treeings 00000	Almost perfect matchings 0000000000	One-ended spanning trees

Definition

A measurable map $T: (V, \nu) \rightarrow (V, \nu)$ is **ergodic** if any *T*-invariant measurable set is either measure 1 or 0.

Fact

Any irrational rotation is ergodic.

McGill University

Proof continued

Since θ is irrational, both T_{θ} and $T_{2\theta}$ are ergodic.

Marcin Sabok Hyperfinite graphings McGill University

Proof continued

Since θ is irrational, both T_{θ} and $T_{2\theta}$ are ergodic.

Suppose \boldsymbol{M} is a measurable perfect matching. Let

$$A = \{x \in S^1 : (x, T_\theta(x)) \in M\}.$$

Note that A is $T_{2\theta}$ -invariant, so either null or co-null. Note that

$$B = S^1 \setminus A$$

< □ > < □ > < □ > < □ >

McGill University

has the same property.

Proof continued

Since θ is irrational, both T_{θ} and $T_{2\theta}$ are ergodic.

Suppose \boldsymbol{M} is a measurable perfect matching. Let

$$A = \{x \in S^1 : (x, T_\theta(x)) \in M\}.$$

Note that A is $T_{2\theta}$ -invariant, so either null or co-null. Note that

$$B = S^1 \setminus A$$

has the same property.

But $T_{\theta}(A) = B$ and T_{θ} preserves the measure. Contradiction.

(日)

McGill University

Treeings

A **treeing** is a graphing whose connected components are trees (i.e. acyclic connected graphs).

Marcin Sabok Hyperfinite graphings McGill University

Treeings

A **treeing** is a graphing whose connected components are trees (i.e. acyclic connected graphs).

Spanning treeings

Given a graphing G, by a **spanning treeing** we mean a treeing contained in G whose connected components are the same as those of G.

< ロ > < 回 > < 回 > < 回 > <</p>

Perfect matchings in graphings 0000	Treeings 0●000	Almost perfect matchings	One-ended spanning trees

Fact

Any hyperfinite graphing admits a (measurable) spanning treeing.

イロト イロト イヨト イ

McGill University

Fact

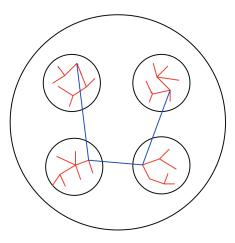
Any hyperfinite graphing admits a (measurable) spanning treeing.

Proof

Any **finite graph admits a spanning tree** and we can use the finite graphs approximating the graphing to construct a spanning treeing.

< D > < A > < B > <</p>

Proof by picture



McGill University

Perfect matchings in graphings 0000	Treeings 000●0	Almost perfect matchings 0000000000	One-ended spanning trees

Finite tree

Recall that a finite tree with v = |V| vertices has |E| = v - 1 edges.

McGill University

Perfect matchings in graphings 0000	Treeings 000●0	Almost perfect matchings	One-ended spanning trees

Finite tree

Recall that a finite tree with $v = \left| V \right|$ vertices has $\left| E \right| = v - 1$ edges.

Average degree

Since

$$\sum_{x \in V} \deg(x) = 2|E|,$$

we get that the average degree in a finite tree is equal to

$$\frac{1}{v}\sum_{x\in V} \deg(x) = \frac{2|E|}{|V|} = 2\frac{v-1}{v} \xrightarrow[v \to \infty]{} 2$$

< □ > < 同 > < 回 > < Ξ > < Ξ

McGill University

Theorem (Levitt)

The **cost** of any spanning treeing of a hyperfinite graphing is 1.

Marcin Sabok Hyperfinite graphings McGill University

< ロ > < 回 > < 回 > < 回 > <</p>

Theorem (Levitt)

The **cost** of any spanning treeing of a hyperfinite graphing is 1.

Average degree

This means that the **average degree** of a spanning treeing of a hyperfinite graphing **is equal to** 2.

Marcin Sabok Hyperfinite graphings McGill University

< D > < A > < B > <</p>

Perfect matchings in graphings	Treeings	Almost perfect matchings	One-ended spanning trees
0000	00000	•0000000000	

Convex analysis on fractional perfect matchings

Suppose G is a bipartite regular graphing. We consider the set

 $C_G = \{ \varphi \in L^2(E(G)) : \varphi \text{ is a fractional perfect matching} \}$

イロト イヨト イヨト イヨ

McGill University

Perfect matchings in graphings	Treeings	Almost perfect matchings	One-ended spanning trees
0000	00000	•0000000000	

Convex analysis on fractional perfect matchings

Suppose G is a bipartite regular graphing. We consider the set

 $C_G = \{ \varphi \in L^2(E(G)) : \varphi \text{ is a fractional perfect matching} \}$

< □ > < 同 > < 回 > < Ξ > < Ξ

McGill University

Convex compact set

It is not difficult to see that C_G is a **convex compact set in** $L^2(E(G))$ with the weak topology.

Perfect matchings in graphings	Treeings	Almost perfect matchings	One-ended spanning trees
0000	00000	•0000000000	

Convex analysis on fractional perfect matchings

Suppose G is a bipartite regular graphing. We consider the set

 $C_G = \{ \varphi \in L^2(E(G)) : \varphi \text{ is a fractional perfect matching} \}$

Convex compact set

It is not difficult to see that C_G is a **convex compact set in** $L^2(E(G))$ with the weak topology.

Extreme points

By the **Krein–Milman theorem**, C_G has an extreme point (if it is nonempty).

イロト イボト イヨト イヨト

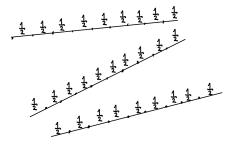
Perfect matchings in graphings	Treeings	Almost perfect matchings	One-ended spanning trees
0000	00000	0000000000	

Fact

If φ is an extreme point of C_G , then for a.e. edge $e \in E(G)$ we have

$$\varphi(e)\in\{0,\frac{1}{2},1\}$$

and the set of edges on which $\varphi = \frac{1}{2}$ is a disjoint union of lines, which we denote by $L(\varphi)$.



メロト メロト メヨト メヨ

Perfect matchings in graphings	Treeings	Almost perfect matchings	One-ended spanning trees
0000	00000	00●00000000	

Proof

We will prove it in three small steps. In **Step 1**, we show the following claim.

Image: Image:

3 ×

McGill University

Perfect matchings in graphings 0000	Treeings 00000	Almost perfect matchings	One-ended spanning trees

Proof

We will prove it in three small steps. In **Step 1**, we show the following claim.

Claim

Suppose φ is an extreme point of C_G . The set

$$F=\{e\in E(G): 0<\varphi(e)<1\}$$

• = • •

McGill University

is a subtreeing (i.e. has no cycles)

Proof of Claim

Suppose the set of edges in F that lie in a cycle contained in F has positive measure. We can refine F to a **positive measure** subset that consists of edge-disjoint cycles and assume for some $\varepsilon > 0$, on every $e \in F$ we have

 $\varepsilon < f(e) < 1 - \varepsilon.$

Marcin Sabok Hyperfinite graphings McGill University

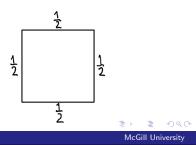
< ロ > < 回 > < 回 > < 回 > <</p>

Proof of Claim

Suppose the set of edges in F that lie in a cycle contained in F has positive measure. We can refine F to a **positive measure subset that consists of edge-disjoint cycles** and assume for some $\varepsilon > 0$, on every $e \in F$ we have

$$\varepsilon < f(e) < 1 - \varepsilon.$$

Recall that each cycle has even length.



Hyperfinite graphings

Marcin Sabok

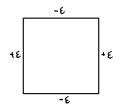
Perfect	matchings	graphings

Treeings

Almost perfect matchings

One-ended spanning trees 00000

Note that we can **add** ε **on the even edges** of the cycles and **subtract** ε **on the odd edges**. Write φ_+ for this fractional perfect matching.



< 口 > < 同 >

Marcin Sabok Hyperfinite graphings McGill University

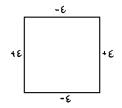
Treeings

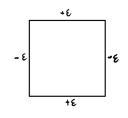
Almost perfect matchings

One-ended spanning trees

Note that we can **add** ε **on the even edges** of the cycles and **subtract** ε **on the odd edges**. Write φ_+ for this fractional perfect matching.

Note that we can also **subtract** ε on the even edges of the cycles and add ε on the odd edges. Write φ_{-} for this fractional perfect matching.





McGill University

But now

$$\varphi = \frac{\varphi_{+\varepsilon} + \varphi_{-\varepsilon}}{2},$$

which contradicts that φ was an extreme point.

Marcin Sabok Hyperfinite graphings McGill University

・ロン ・日 ・ ・ ヨン・

But now

$$\varphi = \frac{\varphi_{+\varepsilon} + \varphi_{-\varepsilon}}{2},$$

which contradicts that φ was an extreme point.

This ends the proof of the Claim.

Marcin Sabok Hyperfinite graphings McGill University

< ロ > < 回 > < 回 > < 回 > <</p>

Perfect matchings in graphings 0000	Treeings 00000	Almost perfect matchings	One-ended spanning trees

Step 2

By the previous claim, the set F is acyclic, so is a subtreeing. Since F is contained in G, it is hyperfinite.

Image: Image:

• = • •

McGill University

Perfect matchings in graphings 0000	Treeings 00000	Almost perfect matchings	One-ended spanning trees

Step 2

By the previous claim, the set F is acyclic, so is a subtreeing. Since F is contained in G, it is hyperfinite.

Note that F has no leaves because φ sums up to an integer at every vertex

• = • •

McGill University

Perfect matchings in graphings 0000	Treeings 00000	Almost perfect matchings	One-ended spanning trees

Step 2

By the previous claim, the set F is acyclic, so is a subtreeing. Since F is contained in G, it is hyperfinite.

Note that F has no leaves because φ sums up to an integer at every vertex

As the average degree of F is 2 and F has no leaves, we get that **a.e. vertex in the graphing spanned by** F **must have degree** 2, which means that F is a disjoint union of lines.

→ ∃ →

Perfect matchings in graphings 0000	Treeings 00000	Almost perfect matchings	One-ended spanning trees
Step 3 We claim that on equals to $\frac{1}{2}$.	a.e. line in .	F the fractional perfec	t matching $arphi$

Marcin Sabok Hyperfinite graphings

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Perfect matchings in graphings 0000	Treeings 00000	Almost perfect matchings 0000000●000	One-ended spanning trees
Step 3			

Slep S

We claim that on a.e. line in F the fractional perfect matching φ equals to $\frac{1}{2}$.

Suppose it is not the case and we have a **positive measure set of lines** in F on which -1

$$\varphi \neq \frac{1}{2}$$

and $\varphi > \varepsilon$ and $\varphi < 1 - \varepsilon$.

McGill University

イロト イロト イヨト イヨ

Perfect matchings in graphings 0000	Treeings 00000	Almost perfect matchings	One-ended spanning trees

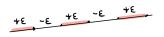
Note that if $\varphi \neq \frac{1}{2}$ on a line l, then we can **call an edge even if** $\varphi(e) > \frac{1}{2}$ and odd otherwise.

ि हि जिल्ला McGill University

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

Perfect matchings in graphings 0000	Treeings 00000	Almost perfect matchings	One-ended spanning trees

Note that we can **add** ε **on the even edges** of the lines and **subtract** ε **on the odd edges**. Write φ_+ for this fractional perfect matching.



McGill University

Treeings

Note that we can **add** ε **on the even edges** of the lines and **subtract** ε **on the odd edges**. Write φ_+ for this fractional perfect matching.

Note that we can also **subtract** ε on the even edges of the lines and add ε on the odd edges. Write φ_{-} for this fractional perfect matching.

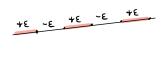


Image: A math a math

McGill University

But now

$$\varphi = \frac{\varphi_{+\varepsilon} + \varphi_{-\varepsilon}}{2},$$

which contradicts that φ was an extreme point.

Marcin Sabok Hyperfinite graphings McGill University

・ロン ・日 ・ ・ ヨン・

But now

$$\varphi = \frac{\varphi_{+\varepsilon} + \varphi_{-\varepsilon}}{2},$$

which contradicts that φ was an extreme point.

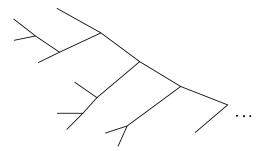
This ends the proof of the Fact describing extreme points of C_G .

Marcin Sabok Hyperfinite graphings McGill University

イロト イヨト イヨト イ

One-ended trees

A one-ended tree is a tree which has one end (as a graph).



◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

Marcin Sabok Hyperfinite graphings McGill University

Theorem (Gaboriau-Conley-Marks-Tucker-Drob)

Any hyperfinite one-ended graphing G admits a **one-ended spanning treeing**, i.e. a subgraphing T such that the components of T are one-ended trees and are the same as the components of G.

Marcin Sabok Hyperfinite graphings McGill University

Perfect matchings in graphings 0000	Treeings 00000	Almost perfect matchings	One-ended spanning trees

Toast

Given a Borel graph G, we say that a Borel col-

lection \mathcal{T} of finite connected subsets of V(G) is a **toast** if it satisfies:

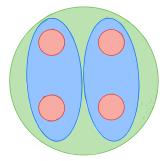
•
$$\bigcup_{K \in \mathcal{T}} E(K) = E(G)$$
,
• for every pair $K \ L \in \mathcal{T}$

either

$$(K \cup N(K)) \cap L = \emptyset$$

• or
$$K \cup N(K) \subseteq L$$
,

• or
$$L \cup N(L) \subseteq K$$
,



Perfect matchings in graphings 0000	Treeings 00000	Almost perfect matchings	One-ended spanning trees 000●0

Toast

Given a Borel graph G, we say that a Borel collection \mathcal{T} of finite connected subsets of V(G) is a **connected toast** if it is a toast and additionally satisfies:

For every K ∈ T the induced subgraph on K \ U_{K⊋L∈T} L is connected.

Marcin Sabok Hyperfinite graphings McGill University

Lemma

Every hyperfinite one-ended graphing admits a connected toast.

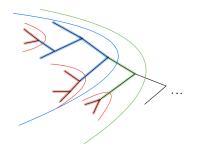
Marcin Sabok Hyperfinite graphings McGill University

Lemma

Every hyperfinite one-ended graphing admits a connected toast.

Proof

We use a one-ended spanning treeing and construct the **toast** along the treeing.



McGill University

(日本) くうい