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Theorem (Bowen–Kun–S.)

Any bipartite hyperfinite a.e. one-ended regular graphing admits a
measurable perfect matching.
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Example (Laczkovich)

There exists a 2-regular (so bipartite, two-ended, hyperfinite)
graphing that does not admit a measurable perfect matching.

Proof
Consider an irrational rotation Tθ : S

1 → S1 and let G be the
Schreier graph of the induced Z-action.
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Definition
A measurable map T : (V, ν)→ (V, ν) is ergodic if any
T -invariant measurable set is either measure 1 or 0.

Fact
Any irrational rotation is ergodic.
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Proof continued
Since θ is irrational, both Tθ and T2θ are ergodic.

Suppose M is a measurable perfect matching. Let

A = {x ∈ S1 : (x, Tθ(x)) ∈M}.

Note that A is T2θ-invariant, so either null or co-null. Note that

B = S1 \A

has the same property.

But Tθ(A) = B and Tθ preserves the measure. Contradiction.
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Treeings

A treeing is a graphing whose connected components are trees
(i.e. acyclic connected graphs).

Spanning treeings

Given a graphing G, by a spanning treeing we mean a treeing
contained in G whose connected components are the same as
those of G.
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Fact
Any hyperfinite graphing admits a (measurable) spanning treeing.

Proof
Any finite graph admits a spanning tree and we can use the
finite graphs approximating the graphing to construct a spanning
treeing.
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Proof by picture
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Finite tree
Recall that a finite tree with v = |V | vertices has |E| = v − 1
edges.

Average degree

Since ∑
x∈V

deg(x) = 2|E|,

we get that the average degree in a finite tree is equal to

1

v

∑
x∈V

deg(x) =
2|E|
|V |

= 2
v − 1

v
−−−→
v→∞

2
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Theorem (Levitt)

The cost of any spanning treeing of a hyperfinite graphing is 1.

Average degree

This means that the average degree of a spanning treeing of a
hyperfinite graphing is equal to 2.
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Convex analysis on fractional perfect matchings

Suppose G is a bipartite regular graphing. We consider the set

CG = {ϕ ∈ L2(E(G)) : ϕ is a fractional perfect matching}

Convex compact set

It is not difficult to see that CG is a convex compact set in
L2(E(G)) with the weak topology.

Extreme points

By the Krein–Milman theorem, CG has an extreme point (if it is
nonempty).
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Fact
If ϕ is an extreme point of CG, then for a.e. edge e ∈ E(G) we
have

ϕ(e) ∈ {0, 1
2
, 1}

and the set of edges on which ϕ = 1
2 is a disjoint union of

lines, which we denote by L(ϕ).
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Proof
We will prove it in three small steps. In Step 1, we show the
following claim.

Claim
Suppose ϕ is an extreme point of CG. The set

F = {e ∈ E(G) : 0 < ϕ(e) < 1}

is a subtreeing (i.e. has no cycles)
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Proof of Claim
Suppose the set of edges in F that lie in a cycle contained in F
has positive measure. We can refine F to a positive measure
subset that consists of edge-disjoint cycles and assume for
some ε > 0, on every e ∈ F we have

ε < f(e) < 1− ε.

Recall that each cycle has even
length.
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Note that we can add ε on the
even edges of the cycles and
subtract ε on the odd edges.
Write ϕ+ for this fractional per-
fect matching.

Note that we can also subtract ε
on the even edges of the cycles
and add ε on the odd edges.
Write ϕ− for this fractional per-
fect matching.
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But now

ϕ =
ϕ+ε + ϕ−ε

2
,

which contradicts that ϕ was an extreme point.

This ends the proof of the Claim.
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Step 2

By the previous claim, the set F is acyclic, so is a subtreeing.
Since F is contained in G, it is hyperfinite.

Note that F has no leaves because ϕ sums up to an integer at
every vertex

As the average degree of F is 2 and F has no leaves, we get that
a.e. vertex in the graphing spanned by F must have degree
2, which means that F is a disjoint union of lines.
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Step 3

We claim that on a.e. line in F the fractional perfect matching ϕ
equals to 1

2 .

Suppose it is not the case and we have a positive measure set of
lines in F on which

ϕ 6= 1

2

and ϕ > ε and ϕ < 1− ε.
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Note that if ϕ 6= 1
2 on a line l, then we can call an edge even if

ϕ(e) > 1
2 and odd otherwise.
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But now

ϕ =
ϕ+ε + ϕ−ε

2
,

which contradicts that ϕ was an extreme point.

This ends the proof of the Fact describing extreme points of CG.
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One-ended trees
A one-ended tree is a tree which has one end (as a graph).
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Theorem (Gaboriau–Conley–Marks–Tucker-Drob)

Any hyperfinite one-ended graphing G admits a one-ended
spanning treeing, i.e. a subgraphing T such that the components
of T are one-ended trees and are the same as the components of G.
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Toast
Given a Borel graph G, we say that a Borel col-
lection T of finite connected subsets of V (G) is a toast if it satisfies:

I
⋃
K∈T E(K) = E(G),

I for every pair K,L ∈ T
I either

(K ∪N(K)) ∩ L = ∅
I or K ∪N(K) ⊆ L,
I or L ∪N(L) ⊆ K,
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Toast
Given a Borel graph G, we say that a Borel collection T of finite
connected subsets of V (G) is a connected toast if it is a toast
and additionally satisfies:

I for every K ∈ T the induced
subgraph on K \

⋃
K)L∈T L

is connected.
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Lemma
Every hyperfinite one-ended graphing admits a connected
toast.

Proof
We use a one-ended spanning treeing and construct the toast
along the treeing.
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